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ABSTRACT

We perform a fluctuation analysis of the 1.1 mm Bolocam Lockman Hole Survey, which covers 324 arcmin2 to
a very uniform point-source–filtered rms noise level of � ’ 1:4 mJy beam�1. The fluctuation analysis has the
significant advantage of using all of the available data, since no extraction of sources is performed: direct com-
parison is made between the observed pixel flux density distribution [P(D)] and the theoretical distributions for a
broad range of power-law number count models, n(S ) ¼ n0S

��. We constrain the number counts in the 1–10 mJy
range and derive significantly tighter constraints than in previous work: the power-law index � ¼ 2:7þ0:18

�0:15, while the
amplitude is n0 ¼ 1595þ85

�238 mJy�1 deg�2, or N (>1 mJy) ¼ 940þ50
�140 deg�2 (95% confidence). At flux densities

above 4 mJy, where a valid comparison can be made, our results agree extremely well with those derived from the
extracted source number counts by Laurent et al.: the best-fitting differential slope is somewhat shallower (� ¼ 2:7
vs. 3.2), but well within the 68% confidence limit, and the amplitudes (number of sources per square degree) agree
to 10%. At 1 mJy, however [the limit of the P(D) analysis], the shallower slope derived here implies a substantially
smaller amplitude for the integral number counts than extrapolation from above 4 mJy would predict. Our derived
normalization is about 2.5 times smaller than that determined by theMax-PlanckMillimeter Bolometer (MAMBO)
at 1.2 mm (Greve et al.). However, the uncertainty in the normalization for both data sets is dominated by the
systematic (i.e., absolute flux calibration) rather than statistical errors; within these uncertainties, our results are in
agreement. Our best-fit amplitude at 1 mJy is also about a factor of 3 below the prediction of Blain et al., but we
are in agreement above a few millijanskys. We estimate that about 7% of the 1.1 mm background has been resolved
at 1 mJy.

Subject headinggs: galaxies: high-redshift — galaxies: starburst — submillimeter

Online material: color figures

1. INTRODUCTION

The study of background radiation fields—the integrated
contribution from objects over all redshifts—at different wave-
lengths has provided valuable constraints on the history of the
universe. Since different wavelengths are dominated by different
classes of objects and, in effect, by different physical processes,
it is possible to place potentially powerful constraints on the
history (i.e., the luminosity function and redshift distribution) of
a chosen class of object by the choice of wave band (e.g., Hauser
& Dwek 2001; Kashlinsky 2005).

The detection of the cosmic infrared background (CIB) by
the Cosmic Background Explorer (COBE) satellite (Puget et al.
1996; Fixsen et al. 1998) offered a new view of galaxy evolu-
tion. The surprisingly large amount of energy in the CIB in-
dicates that the total luminosity from thermal dust emission is
comparable to or exceeds the integrated UV/optical energy
output of galaxies (Guiderdoni et al. 1997). The only plausible
sources of this luminosity are dusty star-forming galaxies, or
dust-enshrouded active galactic nuclei.

The discovery of the CIB was rapidly followed by deep sur-
veys, both from the ground (with the Submillimeter Common-
User Bolometric Array [SCUBA], Bolocam, and MAMBO at
850�m, 1.1mm, and 1.3mm, respectively) and from space, using
the Infrared Space Observatory (ISO) (at 15, 90, and 170 �m).
The high number counts (compared to no-evolution or moderate-
evolution models for the infrared galaxy population) found in all
these surveys imply that strong evolution of the source popu-
lations must have occurred (e.g., Scott et al. 2002; Lagache et al.
2003 and references therein), implying that these observations
probe a major epoch in the history of the universe. Comparison
of the number counts with the observed CIB indicates that only
a small fraction (P10%) of the background has been resolved in
the far-infrared. A similar fraction (10%–20%) is resolved in the
submillimeter in blind-sky surveys, but by taking advantage of
gravitational lensing, it is possible to go deeper, and the SCUBA
Lens Survey has resolved �60% of the background at 850 �m
(Smail et al. 2002).
The deep Bolocam survey of the LockmanHole (Laurent et al.

2005) covered 324 arcmin2 to a very uniform rms noise level
� ’ 1:8 mJy; after optimally filtering for point sources, the
rms in the uniform coverage area is ’1.4 mJy (for details, see
Laurent et al. 2005). In that paper, the source number counts
were determined by first extracting point-source candidates, then
performing extensive simulations and tests to establish the ro-
bustness of the source candidates and to estimate the number of
false detections and the effects of bias and completeness on the
derived number counts. The effects of Eddington bias—the up-
ward bias of source flux densities by noise fluctuations—in
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particular, are substantial, such that most of the detected sources
actually have flux densities that lie below the formal 3 � detec-
tion limit.

An alternative approach, which avoids the requirement of
identifying and extracting point sources, is to analyze the distri-
bution of pixels in the map as a function of flux density (Scheuer
1957; Condon 1974). This type of fluctuation analysis is fre-
quently referred to as a ‘‘P(D)’’ analysis (theD denoting deflec-
tion), following early radio astronomical terminology. The great
advantage of this method is that all of the data are used, thereby
making it possible to derive information about sources with flux
densities lyingbelow the formal detection limit, whereas any sensi-
ble point-source extraction technique must implement a minimum
signal-to-noise ratio (S/N) for acceptable sources. In principle, a
fluctuation analysis provides information on the source distribu-
tion down to the flux density level at which there is approxi-
mately one source per beam (Scheuer 1974) provided the noise
level is sufficiently low. A meaningful fluctuation analysis does
require, however, that the noise in the map is very well under-
stood and characterized.

This latter requirement is amply satisfied by the Bolocam
Lockman Hole data. Since accurate determination of systematic
effects on the number counts (e.g., contamination by spurious
sources and flux boosting by Eddington bias) requires a thor-
ough understanding of the noise in the data set, Laurent et al.
(2005) invested considerable effort in characterizing the remain-
ing noise in the Lockman Hole map after cleaning and sky sub-
traction. In brief, multiple realizations of jackknife maps were
constructed by randomly selecting 50% of the data and co-
adding it into a map, doing the same with the other half of the
data, and then differencing the two maps. Any sources, which
should be coherent over multiple observations, will be removed
from the jackknife map. Hence the jackknife maps can be used to
determine the actual power spectral density (PSD) of the noise in
the Lockman Hole map, independent of the signal contribution.
Only the uniform coverage region, in which the rms in the in-
tegration time per pixel is no more than 12% (implying that
the rms noise variation is no more than 6%), has been used in
the analysis; the map has been corrected for coverage variations
prior to construction of the jackknife maps. Hence the noise in
the map is both very uniform and well characterized.

In this paper we present a fluctuation analysis of the Lockman
Hole observations. In x 2 we present the Bolocam data and de-
scribe the method of analysis and present the results, while in x 3
we compare the results to those derived from the number counts
by Laurent et al. (2005). Section 4 discusses our results and
briefly comments on the implications for further deep millimeter
wavelength surveys.

2. P(D) ANALYSIS OF THE BOLOCAM LOCKMAN
HOLE OBSERVATIONS

The extremely uniform and well-characterized noise in the
Bolocammap of the LockmanHole makes this data set very well
suited for a fluctuation analysis. Since this technique is com-
pletely independent of the number count analysis in Laurent
et al. (2005), which relied on the extraction of point sources, it is
worth revisiting these data. With an rms noise level of 1.4 mJy in
the optimally filtered map, we expect the fluctuation analysis to
probe the number count distribution to the S � 1 mJy level; at
significantly lower flux densities the noise will completely
dominate over the signal in the map. The filtering of the map
will not affect the fluctuation analysis. Optimal filtering is the act
of convolving with a kernel that is optimal for point-source ex-
traction (based on a frequency space S/N weighting). Such a

convolution is a linear mathematical operation and hence affects
point sources of all fluxes in the same way. In practice, the
filtering kernel looks mostly like a Gaussian (hence removing
sub-beam-sized noise) but has a low-frequency roll-off to mini-
mize the contribution of 1/f noise. The result of optimally fil-
tering the map for point sources is thus to improve the S/N of
sources the size of the point-spread function (PSF), independent
of signal strength. No physical sources can be smaller than the
PSF, even if they are too faint to be detected. Hence filtering
the map reduces the noise level without affecting the underlying
source count distribution (at the expense of worsened angular
resolution). An example of the effects of optimal filtering on a
pixel distribution is presented in the Appendix.

Since the goal of this analysis is to probe the distribution of
high-redshift galaxies, it is imperative that we show that the
Bolocam Lockman Hole observations are not significantly con-
taminated by other signals. There are three potential important
sources: primary and secondary cosmic microwave background
(CMB) fluctuations, and Galactic dust foreground emission.

TheCMBprimary and secondary (thermal Sunyaev-Zel’dovich
[SZ]) spectra are generally given in the form

Cl ¼
l(l þ 1)

2�
Cl; ð1Þ

where Cl represents the squares of the individual multipole am-
plitudes, given as (�T /T )2. The contribution from such a back-
ground to the rms flux density in a given experiment is given by
summing

2l þ 1

4�
ClW

2
l ð2Þ

over all l, where Wl is the window function that describes the
response of the experiment to power at a given multipole. For
Bolocam,Wl can be split into two pieces,Wl ¼ BlFl, where Bl is
the window function of the beam and Fl is an effective spatial
filter that depends on the scan strategy and the sky subtraction
and cleaning algorithms. For a Gaussian beam, the beam win-
dow function can be closely approximated by

Bl ¼ e�l(lþ1)� 2
b
=2; ð3Þ

where �b is the dispersion of the Gaussian (White 1992). The
effective spatial filter for a given instrument can vary from one
data set to another as the scan strategy is changed. For the
Lockman Hole map, Fl has been determined empirically by
processing white-noise maps of the same size as themap through
the data reduction pipeline. A very good fit is provided by

Fl ¼ A 1� 1

2�

tan�1(2�l=l0)

(l=l0)

� �
; ð4Þ

with A ¼ 0:93 and l0 ¼ 4393 (which corresponds to a spatial
frequency f0 ¼ 0:20 arcmin�1).

We have used the current best-fit model to the observed CMB
anisotropies (e.g., Stompor et al. 2001) and model predictions
for the SZ power spectrum (Zhang et al. 2002; Bond et al. 2005)
to estimate that the rms contributions are �SCMB ’ �SSZ ’
0:24 mJy. These values should be compared to the rms of
1.8 mJy in the Lockman Hole map prior to optimal filtering. The
near-identical values for the CMB and SZ signals are coinci-
dental, as the spatial filtering resulting from sky subtraction and
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cleaning produces a very large reduction in the CMB contribu-
tion: without this filtering, the CMB contribution to the rms
would be 1.8 mJy.

We have not explicitly calculated the Galactic dust contri-
bution to the Lockman Hole map. However, Masi et al. (2001)
have analyzed the dust contribution to BOOMERANG maps
and demonstrate that for regions with column densities as low
as the Lockman Hole, the dust contribution is negligible com-
pared to the CMB at 275 GHz.

The measured P(D) of an astronomical map is simply the
pixel distribution: the number of pixels in each flux density bin,
summed over the entire map. No flux density thresholds are im-
posed, and the entire uniform coverage region is included. Be-
cause of the faintness of the sources in the map, we have (as
in Laurent et al. 2005) taken advantage of our knowledge of
the Bolocam beam shape to optimally filter the map for point
sources. This increases the effective beam size, which increases
the amount of source confusion (see x 4); however, the im-
proved S/N of the sources (since optimal filtering reduces the
noise level in the map) more than compensates for the worsen-
ing of source confusion. Figure 1 displays the cleaned, optimally
filtered Lockman Hole map (this is the same map presented by
Laurent et al.), while Figure 2 shows the observed P(D) distri-
bution. A total of 66 bins were used, as a compromise between
resolution of the distribution and the number of pixels per bin
(see below). Note also that themean has been subtracted from the
map, so the peak of the distribution is nearly (but not precisely,
due to the presence of sources in the map) at zero.

We need to construct theoretical P(D) distributions to com-
pare with the observed distribution, for a given choice of source

model (i.e., number of sources per unit area as a function of
flux density). This can be done directly for an assumed number
count distribution (see, e.g., Takeuchi & Ishii 2004) provided
the beam shape and the noise are well characterized, but there
are two complications for the Lockman Hole data: the shape of
the optimal filter is not analytic, and even within the uniform
coverage area, there are fluctuations in the number of obser-
vations per pixel, which translate to variations in the noise level
(at about the 6% level, prior to optimal filtering); see Figure 1 of
Laurent et al. (2005).
We have therefore taken an alternate approach, in which we

construct simulated maps from which we calculate the P(D)
distribution directly, just as for the actual data. The source dis-
tribution in all cases is a featureless power law, with differential
number count distribution

n(S ) ¼ n0S
�� mJy�1 deg�2; ð5Þ

where S is the source peak flux density (in millijanskys). For all
of the simulations the flux density range used was 0.1–10 mJy;
the lower limit is small enough compared to the rms noise so
that varying it has no significant effect on the results (decreasing
it merely increases the DC level of the map, which is set to zero
in any case), while the upper limit simply ensures that there are
no sources much brighter than any present in the Lockman
Hole. (In fact, because of the steepness of most of the source
distributions considered, the results are generally independent
of the choice of maximum flux, for any value larger than this.)
The sources are added to a blank map with peak flux densities
randomly drawn from the above power law, as Gaussian sources
with sizematched to the pointing-smearedBolocambeamFWHM
of 36B7. The simulated map pixels are fixed at 1000 ; 1000, as in
the real map shown in Figure 1. The sources are uniformly ran-
domly placed [i.e., zero spatial correlation; note that strong clus-
tering of the sources will affect the resulting P(D) distribution:
Barcons 1992; Takeuchi & Ishii 2004] over an area larger than
the final map, so that the sources can fall only partially within
the map.

Fig. 1.—Bolocam 1.1 mm map of the Lockman Hole region. Only the good
coverage region is shown; the rest of the map has been masked off. The map is
centered on R:A: ¼ 10h52m08:s82 and decl: ¼ þ57�21033B8 (J2000.0). The map
pixels are 1000 ; 1000, and the rms is 1.4 mJy; the color scale ranges from �5.6 to
+4.2 mJy.

Fig. 2.—Pixel flux density distribution of the Lockman Hole map shown in
Fig. 1. There are 66 bins in flux density, extending from �4.5 to +4.8 mJy.

MALONEY ET AL.1046 Vol. 635



In order to match the Bolocam observations, the noise is cal-
culated using the measured PSD from the Lockman jackknife
maps, which contain no source signal (Laurent et al. 2005): a
white-noise realization is constructed in Fourier space, then
multiplied by the jackknife PSD and normalized to produce the
correct noise rms (see discussion in x 5.2 of Laurent et al. 2005).
In other words, the simulated noise map is constructed so that it
has, on average, both the same rms and the same power as a
function of spatial frequency as the actual noise in the Lockman
Hole map. The resulting noise map is then corrected for the cov-
erage variations and added to the source map. Although the PSD
of the same jackknife map was used for all of the simulations, we
verified that the difference between the PSDs of different jack-
knife maps is no larger than the differences produced by using
independent white-noise realizations multiplied by the same
PSD, the procedure used here.6

Since there are only about 12,000 pixels in the good coverage
region, the effect of shot noise (in both the source and noise
contributions) in the simulations is substantial. To eliminate this
as a source of uncertainty, we initially generated between 50 and
150 independent realizations for each choice of source power
law: in each realization the sources are randomly drawn from the
specified power law, while a random realization of the noise map
is generated as described above. The pixel flux density distri-
bution for each of these maps is then calculated, and these are
averaged together to produce the theoretical P(D).

To analyze the fluctuations in the real data, we have carried out
a maximum likelihood analysis to compare the observed pixel
distribution with the predicted P(D) from the simulations for a

broad range of power-lawmodels. As discussed by Friedmann&
Bouchet (2004), as long as we ensure that the number of pixels in
each bin is large, so that the Poisson distribution of the number of
pixels per bin is closely approximated by a Gaussian, and that
there are negligible correlations between pixel bins, then maxi-
mizing the likelihood function is equivalent to minimizing

Q2 ¼
XNbins

i¼1

pi � �iffiffiffi
�

p
i

� �2

; ð6Þ

where pi is the number of pixels within flux bin i in the Lockman
Hole data and �i is the expected number of pixels in the bin as
predicted by the assumed noise-convolved model. In other
words, if the above assumptions are satisfied, then Q2 is a good
approximation to �2, and minimizing Q2 is equivalent to max-
imum likelihood estimation. The choice of 66 bins over the range
�4.5 to +4.8 mJy was made as a compromise between resolving
the distribution and keeping the number of pixels per bin large
enough so that the above assumption is reasonably well satisfied
over most of the range. In the actual calculation of Q2, any bins
with fewer than 10 pixels in either the observed or predictedP(D)
were not included; the smallest number of bins actually used was
56, and was typically 58 or 59.7 Both the best-fit values and the
errors on the derived number count parameters were derived by
directly mapping out �2 space by variation of the model param-
eters. Once the general shape of the �2 distribution was estab-
lished, we ran a new set of models covering the interesting region
of parameter space, with 200 realizations of each model.

In Figure 3 (left panel ) we show the Lockman P(D) from
Figure 2 again, overplotted with the theoretical P(D) produced

6 Although the PSD, being the square of the Fourier transform of the map,
does not preserve phase information, we do not expect this to have significant
effect on the P(D) analysis. Generating a map from its PSD is equivalent to
taking the original map and rearranging its pixels while preserving the ampli-
tude of its Fourier transform. Unless the map is dominated by such regular
structure that phase cancellation effects are important, this rearrangement will
have no significant impact on the pixel distribution.

7 Note that since we are discarding some data—always, in fact, the most
extremal bins—we expect that the resulting confidence regions for the model
parameters will be more conservative than if we had discarded no data. If we
raise the minimum pixels per bin threshold to 15 or 20, the size of the confidence
regions increases, as expected; the location of the minimum is unaffected.

Fig. 3.—Left: The Lockman Hole P(D) distribution from Fig. 2 (thick line), overplotted with the pixel distribution produced by 100 realizations of a noise-only
map (thin line). The marked discrepancies between the two are a consequence of the signal in the actual map. Right: The actual P(D) as in the left panel, now
overplotted (thin line) with the theoretical P(D) produced by the best-fitting power-law model, with � ¼ 2:7 and n0 ¼ 1595 mJy�1 deg�2. This model has �2 ¼ 51:5
for 57 dof. [See the electronic edition of the Journal for a color version of this figure.]
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by averaging 100 realizations of a noise-only simulation. The ob-
vious discrepancies between the two distributions—the higher
peak and narrower width of the noise-only P(D)—are simply a
reflection of the presence of signal in the Lockman map. In the
right panel, we plot the Lockman P(D) again, now overplotted
with the simulated P(D) for the best-fitting model, which has
� ¼ 2:7 and n0 ¼ 1595 mJy�1 deg�2. The reduced �2 for this
model is�2

� ¼ 0:90 (�2 ¼ 51:5 for 57 degrees of freedom [dof ]);
for reference, �2

� ¼ 9:3 for the noise-only realization.
The number of sources per beam at the 1 mJy level is only

about 0.1; it is the noise level in the map, rather than the density
of sources, that limits the flux density we can probe with the
fluctuation analysis. Our best-fit model implies that Bolocam
would reach the �1 source per beam level at S� � 0:3 mJy. We
also note that, although we could in principle have fitted a more
complicated model (e.g., a broken power law) to the data, the
goodness of fit of the best-fitting model is quite high, with a
68% probability (for 59 bins� 2 model parameters ¼ 57 dof )
that �2 would exceed this value by chance. Hence there is no
compelling reason for fitting a more complex model.

In Figure 4 we show the �2 map of the power-law model
parameter space. The abscissa is the power-law index, �; for the
ordinate we have used the normalization N (>1 mJy), the num-
ber of sources per square degree with peak flux density greater
than or equal to 1 mJy (i.e., the integral number count distribu-
tion). This is related to n0 by

n0 ¼ (� � 1)N (>S )S��1; ð7Þ

where S is the peak flux density. The contours are ��2 for joint
confidence limits on � and N of 68%, 95.4%, and 99.7%, labeled
(1) for��2 ¼ 2:3, (2) for��2 ¼ 6:17, and (3) for��2 ¼ 11:8.
The location of the minimum is marked by a cross, with
N (>1 mJy) ’ 940 deg�2. To further reduce the noise, the con-
tours have been mildly smoothed by regridding via Delaunay
triangulation. The 95% confidence limits on � and N (marginal-

izing over N and �, respectively) are � ¼ 2:7þ0:18
�0:15 and N ¼

940þ50
�140 deg�2, respectively. The equivalent confidence region

for n0 is n0 ¼ 1595þ85
�238 mJy�1 deg�2.

3. COMPARISON WITH THE LOCKMAN HOLE
POINT-SOURCE RESULTS

As noted above, Laurent et al. (2005) determined the best-
fitting number counts in the observed Lockman Hole region by
identifying point sources, carrying out extensive simulations to
determine the effects of flux bias and completeness, then per-
forming a maximum likelihood analysis to constrain the al-
lowed number counts (assumed to be a power law). Since only
source candidates above 3 �were considered, this analysis only
provides information on the number counts above an observed
flux density S� � 4mJy. Hence the only fair way to compare the
results from this paper with the Laurent et al. (2005) results is to
convert the P(D) number count constraints from 1 to 4 mJy.
This requires scaling the normalization by a factor of 41�� (see
eq. [7] above). We also need to rescale the Laurent et al. (2005)
results, since their normalization parameter A (chosen to reduce
the degeneracy between n0 and � when only a small range in
flux density is available) is related to the integral number counts
by N (>4 mJy) ¼ 4A/(� � 1) for � > 1.
In Figure 5 we show the rescaled P(D) results (note that the

effect of this correction is to suppress [in N ] the higher � part of
the distribution andmagnify the low-� end, compared to the 1mJy
counts shown in Fig. 4), with the same contours as in Figure 4.
The minimum is located at N (>4 mJy) ’ 88:9 deg�2. Also
plotted, as large curves, are the joint 68% N-� contour for the
point-source–derived number counts and the location of the
minimum (marked by a plus sign) at N (>4 mJy) ’ 96:3 deg�2.
Clearly, the results from both analyses are in good agreement
with each other: the P(D) minimum lies within the 68% confi-
dence contour from the number count analysis of Laurent et al.
(2005). The 4 mJy normalizations differ by less than 10%. The
smaller value of the power-law index preferred by the fluctuation
analysis is undoubtedly a consequence of the greater dynamic
range in flux density that is included, since very few data are
discarded. Because of the steepness of the allowed power laws

Fig. 4.—Joint confidence limits for fit of power-law number count models to
the Lockman Hole P(D) distribution. The abscissa is the index of the differential
power law, while the ordinate is the normalization, taken to be the number of
sources per square degree with peak flux densities greater than or equal to 1mJy.
The minimum value of �2, �2 ¼ 51:5, marked by a plus sign, is located at
� ’ 2:7, N (>1 mJy) ’ 938 deg�2; this corresponds to a normalization for the
differential number counts, n0 ¼ 1595 mJy�1 deg�2. The joint confidence re-
gions for � and N are labeled with the values of ��2 as follows: (1) for
��2 ¼ 2:3, (2) for ��2 ¼ 6:17, and (3) for ��2 ¼ 11:8. The contours have
been mildly smoothed by regridding onto a uniform grid to further reduce the
noise.

Fig. 5.—Same as Fig. 4, but for the integral 4 mJy counts, for comparison
with the results of Laurent et al. (2005). The minimum value of �2 ( plus sign) is
located at � ’ 2:7, N (>4 mJy) ’ 88:9 deg�2. The joint confidence regions for
� and N are labeled as in Fig. 4. Shown as large curves is the joint 68% confi-
dence region determined by Laurent et al. (2005; this is truncated due to
the prior assumption that � > 2) and their derived minimum at � ¼ 3:2 and
N (>4 mJy) ’ 96:3 deg�2. The agreement between the two methods is very
good. [See the electronic edition of the Journal for a color version of this figure.]

MALONEY ET AL.1048 Vol. 635



(� � 2:5 3), a factor of 4 decrease in flux density results in an
order-of-magnitude increase in the integrated number of sources,
which accounts for the much smaller errors on N and � produced
by the fluctuation analysis.

In Figures 6 and 7 we show our derived number counts to-
gether with the Laurent et al. (2005) number counts, as well as
all of the other directly comparable observed and theoretical
number counts (discussed below). Figure 6 plots the differential
number counts, while Figure 7 shows the cumulative number
counts. The differential counts are much preferred, since they re-
quire no assumptions about the source distribution at fluxes higher
than have been observed; furthermore, the integral counts tend
to obscure any structure in the number count distribution. To fa-
cilitate comparison with other work, we nonetheless show the
cumulative counts as well.

The differential number counts in Figure 6 have also been
multiplied by a factor of S 2:5, to remove the scaling expected for
a Euclidean universe of uniform sources; since the best-fit slope
is�2.7, the model is nearly flat in this representation. The solid
line shows the best-fit model from the P(D) analysis; the dark
gray and light gray shaded regions show the 68% and 95% con-
fidence regions, respectively. The dashed line above 4 mJy
shows the Laurent et al. (2005) counts, while the very light gray
region shows the 68% confidence region for their number
counts. The agreement between the point-source–derived num-
ber counts of Laurent et al. and the number counts produced by
the fluctuation analysis of this paper is excellent, but the fluc-
tuation analysis provides much tighter constraints and extends
to much lower flux densities. Also plotted (the thick error bars
at 1, 3, and 6 mJy) are the two-sided 95% confidence Poisson
errors on the number counts; these have been derived for a
Lockman Hole–sized field and then scaled to 1 deg2.

Figure 7 plots in the same fashion the cumulative number
counts. The apparent discrepancy between the P(D) results and
the Laurent et al. (2005) results as S� approaches 7 mJy is a con-
sequence of the imposition of a high-flux cutoff of 7.4 mJy in the
latter analysis, in consequence of the absence of any sources
brighter than 7 mJy. To emphasize that this apparent discrepancy
is not significant, in Figure 7we also plot the Poisson errors on the
best-fit number counts for 7, 8, and 9 mJy; as for the differential
number counts, these have been calculated for a field the size of
the Lockman Hole and then scaled to 1 deg2. As was also evident
in Figure 6, the Lockman Hole field is simply not large enough
in area to provide strong constraints on the number density of
sources at flux densities significantly in excess of 7 mJy.

4. DISCUSSION AND IMPLICATIONS

The Bolocam Lockman Hole observations (Laurent et al. 2005)
have provided some of the first significant observational constraints
on the number counts of high-redshift galaxies at k � 1:1 mm. In
this paper we have taken advantage of the extremely uniform noise
level of this data set and performed a fluctuation analysis. Since it is
not necessary to extract point sources for this analysis, we are able
to probe the number count distribution to lower flux density levels
than in the previous paper and to provide substantially tighter
constraints on the slope and amplitude of the number counts at this
wavelength than in any previous work.

The important results in this paper are presented in Figures 4,
5, 6, and 7. The best-fitting power-law number count model has
an index � ¼ 2:7þ0:18

�0:15, a differential number density at 1 mJy
n0 ’ 1595þ85

�238 mJy�1 deg�2, and an integrated number density
N (>1 mJy) ’ 940þ50

�140 deg�2 (95% confidence limits).
At present there are few other observational results or theo-

retical predictions for the 1.1 mm number counts to which our

Fig. 6.—Observed and theoretical differential number counts at k ’ 1:1mm.
The counts have been scaled by S 2:5. The solid line shows the best-fit model
from the fluctuation analysis of this paper; the dark gray and light gray shaded
regions show the 68% and 95% confidence limits. The dashed line above 4 mJy
is the best-fit model from the number count analysis of Laurent et al. (2005),
while the very light gray region displays their 68% confidence region. The cir-
cles are derived from the 1.2 mmMAMBO observations of Greve et al. (2004);
the error bars indicate the Poisson two-sided 95% confidence limits, calculated
for the observed area (370 arcmin2) and scaled to 1 deg2. The diamonds are the
model number counts of Blain et al. (2002) at 1, 2, 5, and 7.5 mJy (we have
plotted only a few points rather than the full range simply for clarity); the error
bars have been taken to be a factor of 2 (A. W. Blain 2004, private communi-
cation). The thick error bars plotted on the P(D) results at 1, 3, and 6 mJy show
the two-sided 95% confidence Poisson errors on the differential number counts
assuming that the best-fit model is correct. These errors were derived for a
Lockman Hole–sized field and scaled to 1 deg2.

Fig. 7.—Observed and theoretical integrated number counts at k ’ 1:1 mm.
The solid line shows the best-fit model from the fluctuation analysis of this
paper; the dark gray and light gray shaded regions show the 68% and 95%
confidence limits. The dashed line above 4 mJy is the best-fit model from the
number count analysis of Laurent et al. (2005), while the very light gray region
displays their 68% confidence region. The circles are the 1.2 mm MAMBO
number counts derived by Greve et al. (2004); the error bars are two-sided 95%
Poisson confidence limits. The diamonds are the model number counts of Blain
et al. (2002) at 1, 2, 5, and 7.5 mJy (we have plotted only a few points rather than
the full range simply for clarity); the error bars have been taken to be a factor of 2
(A. W. Blain 2004, private communication). The thick error bars plotted on the
P(D) results at 7, 8, and 9 mJy show the two-sided 95% confidence Poisson
errors on the integrated number counts assuming that the best-fit model is cor-
rect. As in Fig. 6, these errors were derived for a Lockman Hole–sized field and
scaled to 1 deg2.
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results can be compared. We have overplotted the relevant ob-
servational and theoretical values on our derived number counts
in Figures 6 and 7.

The most direct observational comparison is with the 1.2 mm
MAMBO results of Greve et al. (2004). We have used the source
catalogs for the Lockman Hole and European Large Area ISO
Survey N2 (ELAIS-N2) fields presented in that paper, along
with the completeness and bias corrections they adopted (kindly
provided by T. Greve) to calculate the differential counts for the
combined fields. The counts were calculated for 1 mJy wide bins
centered at 3.25, 4.25, and 5.25 mJy. The number counts and the
95% two-sided Poisson error bars, scaled to 1 deg2, are plotted
as circles in Figure 6. The slopes are essentially identical, but
the normalization implied by the MAMBO number counts is
higher than our best-fit value: the MAMBO counts are higher
by factors of 2.3, 2.5, and 3.3 at 3.25, 4.25, and 5.25 mJy, re-
spectively. We show the Lockman histogram together with the
best-fitting model (� � 3:2) with the MAMBO 2.75 mJy nor-
malization in Figure 8a; this model has �2 ¼ 77:3 for 57 dof and
hence is statistically a much worse fit than our result. However,
the discrepancy between the two results is arguably not signifi-
cant, because the errors in the normalizations are dominated by
the systematic uncertainties in the flux densities.

The flux bias correction determined by Laurent et al. (2005;
note that this correction does not include the effects of Eddington
bias, which are automatically incorporated into the simulations)
is � ¼ 0:71þ0:08

�0:10 (90% errors). The uncertainty on the bias correc-
tion translates directly into a systematic uncertainty8 in the num-
ber counts, since the normalization n0 / ���. For � � 2:5 3, the
resulting uncertainty in n0 is approximately a factor of 2. Ob-
viously, this systematic error term is much larger than the sta-

tistical uncertainties on n0 resulting from the P(D) analysis and
is larger than the shot noise (Poisson) errors for S� P 3 mJy. The
true uncertainty on n0 is entirely dominated by how well the
absolute calibration can be established. Similar considerations
apply, of course, to any observational determination of the num-
ber counts, such as the Greve et al. (2004) results; they quote an
absolute calibration uncertainty of 20%. At the best-fit power-
law index � ¼ 2:7, the 90% systematic errors imply that n0 could
be 50% larger, or 25% smaller, than our quoted value. An error in
the absolute calibration affects only the normalization, n0 (orN ),
and hence will affect the vertical position and shape of the con-
fidence regions (since it is a �-dependent term), but not the lo-
cation or extent of these regions along the �-axis. Hence, given the
magnitude of the systematic uncertainties in both the Bolocam
and MAMBO data sets, the number count results appear to be
consistent.
Also plotted in Figure 6 are the model differential num-

ber counts of Blain et al. (2002, diamonds). The model pre-
dicts a slope � ’ 3:1 and a differential number count n(S ) ¼
4500 mJy�1 deg�2 at 1 mJy, nearly a factor of 3 above our best-
fit value and (formally) many � away from the P(D) minimum;
the resulting histogram is shown with the Lockman data in Fig-
ure 8b. Although Blain et al. (2002) do not report uncertainties
on the model predictions, allowing for a reasonable factor of
2 error on the number counts (A. W. Blain 2004, private com-
munication) still places the Blain et al. (2002) prediction more
than 5 � from our best-fit result. Because of the steeper predicted
slope compared to the value we derive, the discrepancy decreases
with increasing flux density: at 7.5 mJy our result and the Blain
et al. (2002) prediction are within ’10% of each other. As with
the comparison with the MAMBO counts, the magnitude of the
systematic flux uncertainties makes it possible to reconcile
the model normalization (within the errors) with the data. Both
the P(D) results and the MAMBO data clearly suggest a slope
shallower than the Blain et al. (2002) prediction.

g. 8afig. 8b Fig. 8.—(a) The Lockman Hole P(D) distribution from Fig. 2 (thick line), overplotted with the pixel distribution produced by 200 realizations of the best-fitting
model (� ¼ 3:2) using the MAMBO (Greve et al. 2004) normalization (thin line). This model has �2 ¼ 77:3 (for 57 dof ) compared to �2 ¼ 51:5 for the best-fitting
model from the fluctuation analysis (see Fig. 3). (b) Same as (a), but for the Blain et al. (2002) prediction of � ¼ 3:1, N (>1 mJy) ¼ 2480 deg�2. This model has
�2 ¼ 133. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 8bFig. 8a

8 The quoted errors on � do not take into account any uncertainties in the flux
densities of the Sandell (1994) calibrator sources, many of which may be ex-
tended at 1.1 mm.
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In Figure 7 we plot the same data sets and model predictions,
but now in the form of the cumulative number counts. This is
potentially a very misleading plot. Note that, while in the dif-
ferential number count plot of Figure 6 the MAMBO data
points always lie above our best-fit results from the P(D) anal-
ysis (i.e., the MAMBO normalization is higher), in the cumu-
lative number count plot the MAMBO number counts9 decline
to match the P(D) results at 4.25 mJy and drop below them
(although not significantly) at higher flux densities.

The reason for this apparent discrepancy between the two
plots lies in the presence of an effective cutoff in the MAMBO
number counts: there are no sources (after bias correction) with
fluxes that exceed 5.7 mJy, and the counts are derived simply by
summing over the observed sources (including a correction for
completeness). Hence the apparent convergence of the MAMBO
counts to the Bolocam counts with increasing flux density is il-
lusory; it is the result of comparing the cumulative number counts
from the fluctuation analysis, which have been calculated by ex-
trapolating the best-fit model to arbitrarily high fluxes, with the
MAMBO counts. A fair comparison of the twowould require that
we impose a cutoff on the P(D) result as well, in which case the
cumulative P(D) results would also decline at higher flux densi-
ties, leading to a more or less constant ratio between our number
counts and theGreve et al. (2004) counts, as seen in the differential
number counts. This behavior is also seen for the Lockman Hole
point-source–derived number counts, for which the maximum
likelihood fit had a cutoff of 7.4 mJy imposed (see discussion at
the end of x 3).

We can use our best-fitting number count model to estimate
the fraction of the 1.1 mm background radiation that has been
resolved into sources. Integrating from 1 to 10 mJy (the range
included in the fluctuation analysis), we obtain

I� ¼ 5:8 ; 10�23 W m�2 Hz�1 sr�1; ð8Þ

which is 7% of the 1.1 mm background as determined by the
Far-Infrared Absolute Spectrophotometer (FIRAS; Fixsen et al.

1998). This is about twice the value obtained directly from the
Bolocam Lockman Hole number counts, and half the result of
integrating the best-fitting maximum likelihood number count
model from Laurent et al. (2005). If we extrapolate our best-fit
result to below 1 mJy, we find that at the Bolocam one source
per beam level of about 0.3 mJy approximately 20% of the 1.1 mm
background would be resolved; at 0.1 mJy this would rise to
45%.

The optimal design of future millimeter wave surveys depends
on precisely what question one wishes to address. As pointed out
by Laurent et al. (2005) and discussed in more detail above, the
Bolocam Lockman Hole survey places almost no constraints on
the bright end of the number count distribution, simply because
the surveyed area was not large enough to detect rare, bright
objects. A survey aimed at probing this end of the luminosity
function should cover more area, at the cost of reduced depth (for
a reasonable amount of observing time). Such a survey is cur-
rently being carried out with Bolocam as part of the Coordinates,
Size, Magnitude, Orientation, and Shape (COSMOS) survey. On
the other hand, in order to study the sources that dominate the
cosmic background at 1.1 mm, a deeper survey is required. As
noted above (x 2), the analysis in this paper suggests that even at
the 1 mJy level, we are just barely touching the confusion limit,
indicating that a deeper survey would be worthwhile. As with the
present data set, a survey with very uniform noise is highly de-
sirable for this analysis, since it makes it possible to carry out a
reliable fluctuation analysis in addition to the extraction of point
sources. As discussed above, however, systematic uncertainties
in flux calibration are likely to remain as the major source of
uncertainty in determining the number counts of submillimeter
galaxies and related quantities, such as the fraction of the milli-
meter background that has been resolved.
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APPENDIX

EFFECT OF OPTIMAL FILTERING ON THE PIXEL DISTRIBUTION

As noted in x 2, since optimal filtering is a linear operation, it will have no effect on the fluctuation analysis. To demonstrate this, in
Figure 9a we show (thick line) the pixel distribution of a simulated map; the x-axis is in millijansky units. The number count model
that was used has the same amplitude and slope as derived from the P(D) analysis in this paper, but we have used a larger map area
(5122 pixels, with 3 pixels beam�1 FWHM) to reduce the shot noise for the sake of illustration. The noise (which is purely white in this
case, also for convenience) has an rms per pixel of 2.3 mJy. This map has not been optimally filtered; the source contribution is just
barely visible in this representation as an excess on the positive side of the distribution. Overplotted in a thin line is the theoretical
P(D) distribution predicted for this model; this depends only on the assumed number count model and the noise distribution, and has
been binned in the same way as the observed pixel distribution.

For simplicity, we have taken the optimal filter to be identical to the beam. Figure 9b, labeled ‘‘Optimally-filtered data,’’ plots the
same two quantities, but now for the filtered map. The signal is far more prominent in this plot, because of the improvement in S/N of
the map due to the optimal filtering. The rms of the noise has been reduced by a factor of 2.3. (We do not gain as large a reduction in the
Lockman Hole data, because of the 1/f noise remaining in the map even after cleaning.) Shown in a thin line again is the theoretical

9 There was a minor error in the calculation of the integral number counts
reported by Greve et al. (2004) (T. R. Greve 2005, private communication). We
have therefore recalculated the cumulative number counts. Only the lowest flux
density bin was significantly affected, with the result being that the value for
N (>2:75) mJy that we derive from their results is about 15% lower than the
value quoted in that paper.
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P(D) distribution. This is again the predicted value, not a fit: the only thing that has been altered in calculating this distribution is the
rms of the noise and the number of sources per beam (since the PSF of sources in the filtered map is larger by root 2 as a result of the
convolution), as well as a slight reduction in the number of pixels (since pixels close to the map edge must be discarded when the map
is filtered). There is precise agreement between the ‘‘observed’’ and predicted distributions, except at the most extremal bins, where
the effects of shot noise are becoming large; this is why we discard such bins in the analysis.
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fig. 9afig. 9b

Fig. 9.—(a) Pixel distribution of a simulated map (thick line), using the best-fitting model from the fluctuation analysis, with white noise with an rms of 2.3 mJy pixel�1.
Overplotted as a thin line is the theoretical P(D) distribution; this depends only on the assumed number count model, the noise level, and the number of pixels in the map. The
beam is assumed to be a Gaussian with a FWHMof 3 pixels, and the map is 512 pixels on a side (see Fig. 3). (b) Same as (a), but for the optimally filtered map. In this case the
optimal filter was assumed to be identical to the beam. Themap is now 504 pixels on a side, since pixels close to themap boundaries must be discarded to avoid edge effects in
filtering. The rms noise per pixel has been reduced to 1 mJy by filtering, with the result being that the signal in the map is far more prominent. As in (a), the theoretical P(D)
distribution precisely matches the observed distribution, except for the most extremal bins, which are affected by shot noise; these are discarded in our analysis. [See the
electronic edition of the Journal for a color version of this figure.]
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