Joint Astronomy Centre James Clerk Maxwell Telescope

PTCS TCS/UN/004

Nick Rees, Russell Kackley, (Firmin Oliveira) 4 August 2003, (15 November 2005)

Description of the JAC Telescope Control System serial line interface

Contents

1		roduction							
	1.1	Interface to JCMT Heterodyne Receivers	3						
2	Inter	nterface description							
	2.1	Description of the C library	3						
	2.2	Description of the serial line commands	4						
	2.3	Example	4						
3	Stati	us values	5						
4	TCP	TCP/IP port pragmatics							
5	Seria	al line pragmatics	5						
6	Com	ommand summaries							
7	Deta	Detailed Command Descriptions							
	7.1	AOFFSET — Offset the aperture from base	8						
	7.2	END_OBS_AFTER_SEQ — End observation after sequence completes	8						
	7.3	GET_AIRMASS — Get the airmass at the current telescope position	9						
	7.4	${\tt GET_DEMAND} \ -\!$	9						
	7.5	GET_GUIDING — Return autoguiding status	10						
	7.6	GET_IMAGE_SCALE — Return the image scale at the current focal plane	10						
	7.7	GET_LOAD — Get status information of the loads of a JCMT receiver	11						
	7.8	GET_OBSERVATORY — Get observatory information	12						
	7.9	GET_OFFSETS — Get offsets from base in gnomonic coordinates	12						
		GET_ONSOURCE — Return tracking status	13						
		GET_RECEIVER_STATUS — Get the status parameters of the heterodyne receiver task.	13						
		GET_SMU — Get an item from the SMU task	14						
	7 13	GET_STATE — Get the telescope STATE values	15						

7.14	GET_SYSTEM — Get tracking coordinate system	16
7.15	GET_TARGET — Get the coordinates of a target object	17
7.16	GET_TEL_BASE — Get the virtual telescope base position	18
7.17	GET_TIME — Get various sorts of time	19
7.18	GET_TSPOSN — Get the most recent time-stamped telescope position	20
7.19	NOD — Nod telescope to selected chopper beam	22
7.20	OBSERVE — Start observation	23
7.21	OFFSET — Offset the main and/or guide telescopes or the aperture from base	23
7.22	SET_BASE_HERE — Set the virtual telescope base position to its current position	24
7.23	SET_GUIDING — Turn autoguiding on/off	25
7.24	SET_LOAD — Set the load of a receiver of the JCMT	25
7.25	SET_POLARIZER — Set the polarizing plate	26
7.26	SET_RECEIVER — Set the parameters for the heterodyne receiver task	26
7.27	SET_TARGET — Specify the coordinates of a target object	27
7.28	SLEW — Slew telescope to the next target	29
7.29	TOFFSET — Offset the main telescope from base	31
7.30	XOFFSET — Offset the guide telescope from base	31

1 Introduction

Normally, when used for observing by JAC common-user instrumentation, the JAC telescope control systems are controlled through DRAMA task interfaces, either:

- The JCMT TEL interface (which is a backwards compatable interface which supports the modes of the previous TCS for old instrumentation).
- The native JCMT PTCS interface (PTCS/001).
- The OCS interface (OCS/ICD/006).

However, this setup neglects visitor instruments that normally do not support the DRAMA system. To circumvent this problem we provide a simple ASCII interface that can either be connected over a serial line, or to a well known TCP/IP port. This document describes this interface.

1.1 Interface to JCMT Heterodyne Receivers

New commands have been added as part of the 'extended Submillimeter Array' (eSMA) program. These commands are defined in a document 'eSMA Software Interface' by Mark Bentum, ver. 0.2, dated August 10, 2005. The added commands are SET_RECEIVER, GET_RECEIVER_STATUS, SD_POINTING, CHECK_SDPOINT, SD_FOCUS, CHECK_SDFOCUS, SET_POLARIZER, SET_LOAD and GET_LOAD. These commands are described in this document.

2 Interface description

The interface is supported in two forms:

- A portable 'C' library which can interface to a serial line on the instrument computer.
- The definition of the actual characters that run on a serial line or over a socket intterface.

With the exception of the C routine that initializes the serial line, there is a one to one correspondence between the C function calls and the serial line commands.

All the commands are described in section 7.

2.1 Description of the C library

The C library is provided as two C source files, plus associated header files.

The software can be obtained by anonymous ftp from the pub/ukirt/ukirt_sw/telescope directory on the machine ftp.jach.hawaii.edu.

The first source file (siolib.c) and its header file (siolib.h) contains just two routines to handle the serial line. These may vary from machine to machine since the serial interfaces may differ. One of

the routines (SioOpen) opens the serial line and the other (SioRead) performs a two pass transaction on the line.

The second file (tels.c, header file tels.h) contains the telescope interface routines themselves. This should be portable since it just uses routines from the stdio library to encode and decode the routine parameters onto the character strings.

The calling sequence of the routines in the tels library are outlined in section 7.

2.2 Description of the serial line commands

From the visitor instrument's point of view, the serial line commands all consist of a command name followed by a fixed set of input parameters terminated by a carriage return (ASCII 13). The command and all the parameters are delimited by spaces. Each parameter is of one of four data types and every parameter must be present and in the correct position on the command line. A description of the data types that are used is given below.

Data type	Example	Description
char	'A string'	Text character string delimited by apostro-
		phes (ASCII 39) and with no embedded apos-
		tropes.
double	1.45E+10	Character representation of a floating point
		number. A base 10 exponent can be included
		by prefixing the exponent with the letter 'E'.
integer	42	Character representation of a signed integer
		between $2^{31} - 1$ and $-(2^{31} - 1)$.
logical	TRUE	Text string with no embedded spaces. A first
		character of upper or lower case 't' indicates
		a true logical value. A first character of upper
		or lower case 'f' indicates a false value. Oth-
		erwise the result is an error. The telescope
		control system will return either 'TRUE' or
		'FALSE' for these fields.

When the command has completed the telescope control system will return a response. The response consists of a set of returned parameters one of which, a status integer, is always present and is the first parameter in the response line. A returned status of zero indicates the command succeeded, anything else indicates some sort of failure. Note that in some cases (specifically the commands with the prefix SET_) command success only means that the command has been passed to the telescope control system, it does not indicate the command has been executed.

Note that the commands must be synchronous – i.e. two commands cannot be active at one time.

2.3 Example

In this example we want to do a number of things, which are fairly typical for a visitor instrument observing sequence:

TCS/UN/004

5

- 1. Define a target position.
- 2. Slew to the target. When slew is finished telescope will be on target and ready to observe.
- 3. Offset 600 arcseconds North. When offset is finished telescope will be on the offset position and ready to observe.

4. Offset back to the centre position.

The commands for this are:

Command sent to telescope	Response
SET_TARGET 'NGC6251' 'B1950' 4.33772497 1.44322245 0 0 1950 0 0 0 0 0 'Galaxy' 0 0 0 <cr></cr>	0 <cr></cr>
SLEW 'MAIN' < CR>	0 <cr></cr>
OFFSET 1000 0 <cr></cr>	0 <cr></cr>
OFFSET 0 0 <cr></cr>	0 <cr></cr>

3 Status values

A (hopefully complete) list of the possible return status values is available as VMS .msg files, or as FORTRAN, Pascal or C header or include files. These files have a constant defined equivalent to every error message, and the definition has a text comment which describes the message.

There is also a small portable C library which is part of the DRAMA software which can take an error number and return the error string.

4 TCP/IP port pragmatics

At the current time, we have not determined the exact form of connection and port number to be used if the interface is to be a TCP/IP network port. This, however, will be agreed with the SMA project, who is likely to be the first project to use the interface in this way. It may be that we set up the port on a terminal server, and route this to a standard serial interface.

5 Serial line pragmatics

If the serial line interface is to be used, the serial line will be connected to a terminal server and so baud rate, parity, handshaking etc are fairly flexible. All characters on the line should be printable ASCII (except for the terminating carriage returns).

The default setup will be 9600 baud, 8 bits, no parity, XON/XOFF handshaking. The latter should not be required since the buffer sizes should be large enough to cope.

6 Command summaries

END_OBS_AFTER_SEQ: End observation after sequence completes

GET_AIRMASS: Get the airmass at the current telescope position

GET_DEMAND: Get the current telescope demand tracking coordinates

GET_GUIDING: Return autoguiding status

GET_IMAGE_SCALE: Return the image scale at the current focal plane

GET_LOAD: Get status information of the loads of a JCMT receiver.

GET_OBSERVATORY: Get observatory information

GET_OFFSETS: Get offsets from base in gnomonic coordinates.

GET_RECEIVER_STATUS: Get the status parameters of the heterodyne receiver task.

GET_SMU: Get an item from the SMU task

GET_STATE: Get the telescope STATE values

GET_SYSTEM: Get tracking coordinate system

GET_TARGET: Get the coordinates of a target object

GET_TEL_BASE: Get the virtual telescope base position

GET_TIME: Get various sorts of time

GET_ONSOURCE: Return tracking status

GET_TSPOSN: Get the most recent time-stamped telescope position

NOD: Nod telescope to selected chopper beam

OBSERVE: Start observation

AOFFSET: Offset the aperture from base

OFFSET: Offset the main and/or guide telescopes or the aperture from base

TOFFSET: Offset the main telescope from base

XOFFSET: Offset the guide telescope from base

SET_BASE_HERE: Set the virtual telescope base position to its current position

SET_GUIDING: Turn autoguiding on/off

SET_LOAD: Set the load of a receiver of the JCMT.

SET_POLARIZER: Set the polarizing plate.

 ${\tt SET_RECEIVER:} \ \ \textbf{Set the parameters for the heterodyne receiver task}.$

SET_TARGET: Specify the coordinates of a target object

 ${\tt SLEW:}\ \, {\bf Slew}$ telescope to the next target

7 Detailed Command Descriptions

7.1 AOFFSET — Offset the aperture from base

Function: Offset the aperture from base

Description: Offset the aperture a specified amount from base. The aperture is offset in the focal plane.

Arguments: AOFFSET expects the following arguments to be supplied on the command line in the order shown.

1 OFFRA double The offset in the EW direction (arcsec)

2 OFFDEC double The offset in the NS direction (arcsec)

Returned Arguments: AOFFSET returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.2 END_OBS_AFTER_SEQ — End observation after sequence completes

Function: End observation after sequence completes

Description:

Arguments: There are arguments for END_OBS_AFTER_SEQ.

Returned Arguments: OBSERVE returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

Support: Russell Kackley, JAC

Version Date: 1-Nov-2005

7.3 GET_AIRMASS — Get the airmass at the current telescope position

Function: Get the airmass at the current telescope position

Description: Return the airmass at the current telescope position

Returned Arguments: GET_AIRMASS returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

2 AIRMASS Double The airmass

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.4 GET_DEMAND — Get the current telescope demand tracking coordinates

Function: Get the current telescope demand tracking coordinates

Description: Return the demand position of the main or guide telescope in the selected coordinate system.

Arguments: GET_DEMAND expects the following arguments to be supplied on the command line in the order shown.

- 1 GUIDE char TRUE for guide telescope, FALSE for main telescope.
- 2 SYSTEM char The coordinate system

TRACKING	The current tracking system	
Jnnnn	FK5 mean for equinox nnnn	
Bnnnn	FK4 mean for equinox nnnn	
APP	Apparent RA/Dec	
HADEC	Apparent Hour Angle/Dec	
AZEL	Topocentric Azimuth/Elevation	
MOUNT	Telescope Mount Coordinates	

Returned Arguments: GET_DEMAND returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

2 C1 Double The RA or HA or Az in radians

3 C2 Double The Dec or El in radians

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.5 GET_GUIDING — Return autoguiding status

Function: Return autoguiding status

Description: Returns the actual autoguiding status (either on or off).

Returned Arguments: GET_GUIDING returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

2 AUTO char TRUE if autoguiding is actually on

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.6 GET_IMAGE_SCALE — Return the image scale at the current focal plane

Function: Return the image scale at the current focal plane

Description: Returns the image scale at the current focal plane. This can be used to relate the XY coordinate system to angles on the sky.

Returned Arguments: GET_IMAGE_SCALE returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

2 SCALE Double The image scale (radians per mm)

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.7 GET_LOAD — Get status information of the loads of a JCMT receiver.

Function: Get status information of the loads of a JCMT receiver.

Description: Give back the temperatures of the loads used for the given receiver.

Arguments: GET_LOAD expects the following arguments to be supplied on the command line in the order shown.

1 REVEIVER char One of the JCMT receivers: 'RxA3', 'RxB', 'RxW', 'HARP'.

Returned Arguments: GET_LOAD returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS int The status value.

2 HOT double Temperature of the HOT load (in K).

3 COLD double Temperature of the COLD load (in K).

Support: F. J. Oliveira, JAC

Version Date: 14-Nov-2005.

7.8 GET_OBSERVATORY — Get observatory information

Function: Get observatory information

Description: Returns the telescope name, longitude, latitude and height.

Returned Arguments: GET_OBSERVATORY returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 The status value STATUS Int 2 NAME The telescope name char East longitude - radians 3 LONG double double Latitude - radians LAT double Height - metres 5 ΗT

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.9 GET_OFFSETS — Get offsets from base in gnomonic coordinates.

Function: Get offsets from base in gnomonic coordinates.

Description: Get the offset from base for either the demand position or the actual telescope position expressed as gnomonic (tangent plane) coordinates.

Arguments: GET_OFFSETS expects the following arguments to be supplied on the command line in the order shown.

1 GUIDE char TRUE for guide telescope, FALSE for main tele-

scope.

 $2~{\,\,{}_{\tiny{\tiny{DEMAND}}}}$ char ${\,\,{}_{\tiny{\tiny{TRUE}}}}$ for the demand position, ${\,\,{}_{\tiny{\tiny{FALSE}}}}$ for the actual

telescope position.

Returned Arguments: GET_OFFSETS returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

2 DC1 Double Offset from base in EW direction - arcsec

3 DC2 Double Offset from base in NS direction - arcsec

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.10 GET_ONSOURCE — Return tracking status

Function: Return tracking status

Description: Returns the actual tracking status (either 1=true or 0=false) and axis errors.

Returned Arguments: GET_ONSOURCE returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS int The status value

2 TRACKING int 1 if tracking, 0 if not tracking

3 AE double Position error in first axis (HA or Az) (radian)

4 BE double Position error in second axis (Dec or El) (radian)

Support: Firmin Oliveira, JAC

Version Date: 09-28-2006

7.11 GET_RECEIVER_STATUS — Get the status parameters of the heterodyne receiver task.

Function: Get the status parameters of the heterodyne receiver task.

Description: Get the receiver parameter lock state.

Arguments: GET_RECEIVER_STATUS expects the following arguments to be supplied on the command line in the order shown.

1 REVEIVER char One of the JCMT receivers: 'RxA3', 'RxB', 'RxW', 'HARP'.

Returned Arguments: GET_RECEIVER_STATUS returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS int The status value

2 MXVOLT double The mixer bias voltage (in mV) - Not presently sup-

ported.

3 MXCURR double The mixer current (in uA) - Not presently sup-

ported.

4 LOCK char Lock status ('LOCKED' if locked)

Support: F. J. Oliveira, JAC

Version Date: 3-Oct-2005.

7.12 GET_SMU — Get an item from the SMU task

Function: Get an item from the SMU task

Description: Return items from the SMU task. Currently, the only item implemented is FOCUS_OFFSETS, which returns the SMU DX, DY, and DZ focus offsets.

Arguments: GET_SMU expects the following arguments to be supplied on the command line in the order shown.

1 ITEM char The item that you want, selected from the following list:

Returned Arguments: GET_SMU returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value
If ITEM=FOCUS_OFFSETS, then the following quantities are returned.

2 SMU_X Double SMU X axis offset from nominal focus

3 SMU_Y Double SMU Y axis offset from nominal focus

4 SMU_Z Double SMU Z axis offset from nominal focus

Support: Russell Kackley, JAC

Version Date: 14-Nov-2005

7.13 GET_STATE — Get the telescope STATE values

Function: Get the telescope STATE values

 $\textbf{Description:} \ \ \text{Return the state number, time, and telescope coordinates from the telescope \texttt{STATE} structure.}$

ture

Arguments: GET_STATE expects the following arguments to be supplied on the command line in the order shown.

1 TIME char The type of time value requested.

The following types are supported:

TAI	International Atomic Time (as MJD)
UTC	Coordinated Universal Time (as MJD)
UT1	Universal Time (as MJD)
TDB	Barycentric Dynamical Time (as MJD)
LAST	Local Apparent Sidereal Time (as fraction of day)

(2) SYSTEM (char) The coordinate system in which to express telescope coordinates. The following systems are supported:

	The current tracking system
AZEL	Topocentric Azimuth/Elevation

Returned Arguments: GET_STATE returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1	STATUS	Int	The status value
2	CONFIG_COUNT	Int	The CONFIG_COUNT value
3	NUMBER	Int	The state number
4	TIME	Double	The time value (as ${\tt MJD}$ or fraction of day, depending on the ${\tt TIME}$ input argument value)
5	AIRMASS	Double	The airmass
6	C1	Double	The first coordinate value (radians)
7	C2	Double	The second coordinate value (radians)

Support: Russell Kackley, JAC **Version Date:** 18-May-2005

7.14 GET_SYSTEM — Get tracking coordinate system

Function: Get tracking coordinate system

Description: Get the name of the current tracking coordinate system for the main or guide telescope. This is the coordinate system that applies to the OFFSET, TOFFSET, and XOFFSET actions.

Arguments: GET_SYSTEM expects the following arguments to be supplied on the command line in the order shown.

1 GUIDE char TRUE for guide telescope, FALSE for main telescope.

Returned Arguments: GET_SYSTEM returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

2 SYSTEM char The coordinate system

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.15 GET_TARGET — Get the coordinates of a target object

Function: Get the coordinates of a target object

Description: The information on a target object is returned. Either the next or current target of the main telescope may be selected.

Arguments: GET_TARGET expects the following arguments to be supplied on the command line in the order shown.

1 NEXT char TRUE for NEXT target FALSE for CURRENT target

Returned Arguments: GET_TARGET returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1	STATUS	Int	The status value
2	NAME	char	The name of the target
3	SYSTEM	char	The coordinate system
4	C1	double	The RA or HA or Az in radians
5	C2	double	The Dec or El in radians
6	PMRA	double	For mean coordinates the RA proper motion
7	PMDEC	double	For mean coordinates the Dec proper motion
8	EPOCH	double	The epoch
9	PARALLAX	double	The parallax in seconds of arc
10	RV	double	The radial velocity in km/s
11	P1	double	First additional parameter
12	P2	double	Second additional parameter
13	Р3	double	Third additional parameter
14	COMMENTS	char	The COMMENTS parameter
15	P4	double	Fourth additional parameter
16	P5	double	Fifth additional parameter
17	P6	double	Sixth additional parameter

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.16 GET_TEL_BASE — Get the virtual telescope base position

Function: Get the virtual telescope base position

Description: Get the base position of the main or guide telescope. The position is returned in the current tracking coordinate system.

Arguments: GET_TEL_BASE expects the following arguments to be supplied on the command line in the order shown.

1 GUIDE char TRUE for guide telescope, FALSE for main telescope.

Returned Arguments: GET_TEL_BASE returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1	STATUS	Int	The status value
2	C1	Double	The RA or HA or Az in radians
3	C2	Double	The Dec or El in radians

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.17 GET_TIME — Get various sorts of time

Function: Get various sorts of time

Description: Returns the Modified Julian Date (MJD), the UTC, UT1, Barycentric Dynamical Time (TDB) and Local Apparent Sidereal Time (LAST).

Returned Arguments: GET_TIME returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1	STATUS	Int	The status value
2	MJD	double	Modified Julian Date
3	UTC	double	UTC - days
4	UT1	double	UT1 - days
5	TDB	double	Barycentric Dynamical Time - days
6	LAST	double	Local Apparent sidereal Time - days

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.18 GET_TSPOSN — Get the most recent time-stamped telescope position

Function: Get the most recent time-stamped telescope position

Description: Returns the most recent time-stamped telescope position.

Arguments: GET_TSPOSN expects the following arguments to be supplied on the command line in the order shown.

TIME_TYPE char The type of time value requested. TIME_TYPE defaults to TAI if not supplied. The following types are supported:

TAI	International Atomic Time (as MJD)
UTC	Coordinated Universal Time (as MJD)
UT1	Universal Time (as MJD)
TDB	Barycentric Dynamical Time (as MJD)
LAST	Local Apparent Sidereal Time (as fraction of day)

2 SYSTEM char Coordinate system in which to return values. Defaults to ALL if not supplied. The following systems are supported:

ALL	Return both TRACKING and AZEL coordinates
TRACKING	Return TRACKING coordinates
AZEL	Return topocentric AZEL coordinates

2 COORD_TYPE char Coordinate type return value(s). COORD_TYPE can be either the single string ALL or a sequence of strings from the following list. Defaults to ALL if not supplied. The strings have the following meanings:

ALL	Return ACTUAL, DEMAND, and BASE coordinates
ACT	Return ACTUAL coordinates
DEM	Return DEMAND coordinates
BASE	Return BASE coordinates

Returned Arguments: GET_TSPOSN returns a space-delimited string containing the telescope position. The specific values returned depend on the input arguments TIME_TYPE, SYSTEM, and COORD_TYPE. If SYSTEM = ALL and COORD_TYPE = ALL, the string will have all of following components. For other combinations of SYSTEM and COORD_TYPE, a subset of the following items will be returned. The string is terminated with a <CR>.

Returned Arguments: The following three items will always be included in the returned string.

1	STATUS	Int	The status value
2	CONFIG_COUNT	Int	The CONFIG_COUNT value
3	TIME	Double	The time value (as MJD or fraction of day, depending on the TIME_TYPE input argument value)
4	AIRMASS	Double	The airmass

Returned Arguments: The following items provide the telescope position in the current tracking coordinate system (when SYSTEM = ALL or SYSTEM = TRACKING):

5	ACT_C1	Double	The first coordinate value (RA, Az, or HA) of actual telescope position (radians)
6	ACT_C2	Double	The second coordinate value (Dec or El) of the actual telescope position (radians)
7	DEM_C1	Double	The first coordinate value (RA, Az, or HA) of demand telescope position (radians)
8	DEM_C2	Double	The second coordinate value (Dec or El) of the demand telescope position (radians)
9	BASE_C1	Double	The first coordinate value (RA, Az, or HA) of base telescope position (radians)
10	BASE_C2	Double	The second coordinate value (Dec or El) of the base telescope position (radians)

Returned Arguments: The following items provide the telescope position in the topocentric Az/El coordinate system (when SYSTEM = ALL or SYSTEM = AZEL):

The first coordinate value (RA, Az, or HA) of actual

			telescope position (radians)
12	ACT_C2	Double	The second coordinate value (Dec or El) of the actual telescope position (radians)
13	DEM_C1	Double	The first coordinate value (RA, Az, or HA) of demand telescope position (radians)
14	DEM_C2	Double	The second coordinate value (Dec or El) of the demand telescope position (radians)
15	BASE_C1	Double	The first coordinate value (RA, Az, or HA) of base telescope position (radians)
16	BASE_C2	Double	The second coordinate value (Dec or El) of the base telescope position (radians)

Support: Russell Kackley, JAC

Version Date: 19-Oct-2005

11 ACT_C1

Double

7.19 NOD — Nod telescope to selected chopper beam

Function: Nod telescope to selected chopper beam

Description: The telescope is 'nodded' to the specified chopper beam. Beams of 'A' and 'B' will normally be set up to correspond to the two extremes of the chop throw, but other beams may be defined for special purposes. 'MIDDLE' normally corresponds to a point halfway between A and B. Completion of the nod is controlled by the tracking status of the main and guide telescopes.

Arguments: NOD expects the following arguments to be supplied on the command line in the order shown.

1 BEAM char The name of the required chopper beam

Returned Arguments: NOD returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.20 OBSERVE — Start observation

Function: Start observation

Description:

Arguments: OBSERVE expects the following arguments to be supplied on the command line in the order shown.

1 FILENAME char The name of the file to be observed

Returned Arguments: Since OBSERVE completes asynchronously, no argument is returned. The intent is to prevent confusion of the remote task communicating with UKIRT_SLIF over the serial line.

Support: Russell Kackley, JAC

Version Date: 1-Nov-2005

7.21 OFFSET — Offset the main and/or guide telescopes or the aperture from base

Function: Offset the main and/or guide telescopes or the aperture from base

Description: Offset the main and/or guide telescopes a specified amount from base. The offsets are specified in a gnomonic (tangent plane) projection with the current base position as the tangent point. Or the aperture is offset in the focal plane

Arguments: OFFSET expects the following arguments to be supplied on the command line in the order shown.

- 1 OFFRA double The offset in the EW direction (arcsec)
- 2 OFFDEC double The offset in the NS direction (arcsec)

Returned Arguments: OFFSET returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.22 SET_BASE_HERE — Set the virtual telescope base position to its current position

Function: Set the virtual telescope base position to its current position

Description: Set the base position of the main or guide telescope to its current demand position. The offsets are also set to zero, so the telescope will not move as a result of this operation.

Arguments: SET_BASE_HERE expects the following arguments to be supplied on the command line in the order shown.

1 GUIDE char TRUE for guide telescope, FALSE for main telescope.

Returned Arguments: SET_BASE_HERE returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.23 SET_GUIDING — Turn autoguiding on/off

Function: Turn autoguiding on/off

Description: This routine is used to specify whether autoguiding is on, in which case the telescope guiding corrections are obtained from the autoguider, or off, in which case no guiding corrections are applied.

Arguments: SET_GUIDING expects the following arguments to be supplied on the command line in the order shown.

1 AUTO char TRUE to turn autoguiding on

Returned Arguments: SET_GUIDING returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.24 SET_LOAD — Set the load of a receiver of the JCMT.

Function: Set the load of a receiver of the JCMT.

Description: Set the load of the chosen receiver. The load could be the HOT load, the COLD load or the SKY load.

Arguments: SET_LOAD expects the following arguments to be supplied on the command line in the order shown.

- 1 RECEIVER char One of the JCMT receivers: 'RxA3', 'RxB', 'RxW', 'HARP'.
- 2 LOAD char Choice of the load of the Rx of "HOT", "COLD" or "SKY".

Returned Arguments: SET_LOAD returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value (1 if OK, 0 if not OK).

Support: F. J. Oliveira, JAC

Version Date: 14-Nov-2005.

7.25 SET_POLARIZER — Set the polarizing plate.

Function: Set the polarizing plate.

Description: Set the polarizing plate to the requested angular position (degree).

Arguments: SET_POLARIZER expects the following arguments to be supplied on the command line in the order shown.

1 POLARIZER char Polarizer: "UKT14", "ROVER" or "HAARP_K_MIRROR".

2 POSITION int Postion of the plate in degrees.

Returned Arguments: SET_POLARIZER returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value (1 if OK, 0 if not OK).

Support: F. J. Oliveira, JAC

Version Date: 14-Nov-2005.

7.26 SET_RECEIVER — Set the parameters for the heterodyne receiver task.

Function: Set the parameters for the heterodyne receiver task.

Description: Set the receiver parameters sky frequency, IF center frequency and side band.

Arguments: SET_RECEIVER expects the following arguments to be supplied on the command line in the order shown.

```
One of the JCMT receivers: 'RxA3', 'RxB', 'RxW',
1
   RECEIVER
                char
                         'HARP'.
                        Sky frequency in GHz.
2
                double
   SKYFR
3
                double
                         IF center frequency in GHz.
   IFCFR
   SIDEBD
                char
                         Sideband, 'UPPER' or 'LOWER'
```

Returned Arguments: SET_RECEIVER returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value (1 if OK, 0 if not OK).

Support: F. J. Oliveira, JAC

Version Date: 3-Oct-2005.

7.27 SET_TARGET — Specify the coordinates of a target object

Function: Specify the coordinates of a target object

Description: The coordinates of a target are specified and the target becomes the NEXT target - i.e. the target the telescope will slew to when the slew action is requested. The target may be specified in a number of coordinate systems. For mean coordinates the proper motions, epoch, parallax and radial velocity must be specified. For other coordinate systems they are ignored. The comments and associated parameters are not used by the telescope control software, but are stored as a means of passing information between various software systems (e.g. the magnitudes of a standard from a catalogue searching task to an instrument task).

Arguments: SET_TARGET expects the following arguments to be supplied on the command line in the order shown.

- 1 NAME char The name of the target
- 2 SYSTEM char The coordinate system

Jnnnn	FK5 mean for equinox nnnn
Bnnnn	FK4 mean for equinox nnnn
APP	Apparent RA/Dec
HADEC	Apparent Hour Angle/Dec
AZEL	Topocentric Azimuth/Elevation
MOUNT	Telescope Mount Coordinates

per motion in Ra-
per motion in Ra-
n years AD
in seconds of arc
relocity in km/s
with the target
with the target
with the target
e target
with the target
with the target
with the target
]

Returned Arguments: SET_TARGET returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.28 SLEW — Slew telescope to the next target

Function: Slew telescope to the next target

Description: The SLEW action results in the following sequence of events.

1. The specified target information is copied to the CURRENT_TARGET.

- 2. The target position (corrected for proper motion and parallax if necessary) becomes the new telescope base position.
- 3. The offset from base is set to zero.
- 4. The differential tracking rates are set to those specified for the new source, or to zero if none were specified.
- 5. The SLEW action completes immediately. Use the WAIT action if you wish to wait until the telescope is tracking the source.

The action will return with an error if the next target is not currently accessible.

The OPTION and CYCLE arguments are only used in cases where there are multiple possible mount positions at which the source could be reached. The TRACK_TIME option is normally the recommended one to use.

Arguments: SLEW expects the following arguments to be supplied on the command line in the order shown.

1 VT char The name of the virtual telescope this operation applies to (e.g. MAIN or GUIDE). If not specified, MAIN is assumed. If the name is specified as ALL, the action will be applied to all existing virtual telescopes.

TARGET char The name of the target to use as the next target (e.g. NEXT, MAIN, GUIDE, etc.). If not specified, NEXT is assumed. However, if VT=ALL and TARGET is not specified, then each telescope will use a target with the same name as the telescope (e.g., the MAIN telescope will use the MAIN target, the GUIDE telescope will use the GUIDE target, etc.)

3 OPTION char The method for resolving multiple accessibility options for the source. SHORTEST_SLEW is the default if no option is specified. OPTION is one of:

SHORTEST_SLEW	Choose the option requiring the shortest slew
LONGEST_TRACK	Choose the option which gives the longest track time
TRACK_TIME	Choose the option which gives the shortest slew,
	whilst still maintaining, if possible, a mini-
	mum track time of the value specified in the
	TRACK_TIME parameter.
CYCLE	Use explicitly specified cycle and/or sector

If OPTION is CYCLE, supply the following additional component.

4 CYCLE Double Cycle number in Azimuth-like axis to check. Every other half cycle the elevation will be >90 degrees. Cycles are:

0	means mount azimuth or HA in range 0 to 180 de-
	grees,
1	in range 360 to 540 degrees,
-1	in range -360 to -180 degrees etc.

If OPTION is TRACK_TIME, supply the following additional component.

4 TRACK_TIME Double Minimum track time (in days) for the TRACK_TIME option.

Support: Russell Kackley, JAC

Version Date: 4-Aug-2003

7.29 TOFFSET — Offset the main telescope from base

Function: Offset the main telescope from base

Description: Offset the main guide telescope a specified amount from base. The offsets are specified in a gnomonic (tangent plane) projection with the current base position as the tangent point.

Arguments: OFFSET expects the following arguments to be supplied on the command line in the order shown.

1 OFFRA double The offset in the EW direction (arcsec)

2 OFFDEC double The offset in the NS direction (arcsec)

Returned Arguments: TOFFSET returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002

7.30 XOFFSET — Offset the guide telescope from base

Function: Offset the guide telescope from base

Description: Offset the guide telescopes a specified amount from base. The offsets are specified in a gnomonic (tangent plane) projection with the current base position as the tangent point.

Arguments: XOFFSET expects the following arguments to be supplied on the command line in the order shown.

1 OFFRA double The offset in the EW direction (arcsec)

2 $\,$ OFFDEC $\,$ double $\,$ The offset in the NS direction (arcsec)

Returned Arguments: XOFFSET returns a space-delimited string containing the following quantities in the order shown. The string is terminated with a <CR>.

1 STATUS Int The status value

Support: Russell Kackley, JAC

Version Date: 4-Apr-2002