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Controlling a telescope chopping secondary mirror assembly
using a signal deconvolution technique

Martin Houde,a) Lynn C. Holt, Hiroshige Yoshida, and Patrick M. Nelson
Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, Hawaii 96720

~Received 7 March 2003; accepted 18 May 2003!

We describe a technique for improving the response of a telescope chopping secondary mirror
assembly by using a signal processing method based on the Lucy deconvolution technique. This
technique is general and could be used for any systems, linear or nonlinear, where the transfer
function~s! can be measured with sufficient precision. We demonstrate how the method was
implemented and show results obtained at the Caltech Submillimeter Observatory using different
chop throw amplitudes and frequencies. No intervention from the telescope user is needed besides
the selection of the chop throw amplitude and frequency. All the calculations are done automatically
once the appropriate command is issued from the user interface of the observatory’s main
computer. ©2003 American Institute of Physics.@DOI: 10.1063/1.1592877#
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I. INTRODUCTION

Chopping scans are widely used in radioastronomy
they provide an efficient way to reduce the adverse effe
that any instabilities present either in the sky signal or so
telescope equipment can have on the detection of weak
nals. A chopping scan is defined as a mode of observa
where the telescope’s secondary mirror is rotated back
forth through some angle and where the signals from b
‘‘end’’ positions are integrated separately and subtrac
from each other. This mode is to be compared with the
called ON–OFF position~beam switching! scan where the
telescope actually moves back and forth from one end p
tion to the other. Because of the much greater speed at w
the secondary mirror can move compared to the telesc
the signal subtraction happens much faster and thus an
crease in the ability to detect weak signals. By moving
chopping the secondary mirror even at a relatively low f
quency~e.g., 1 Hz!, one can obtain a significant improve
ment in base-line quality when compared to a typical be
switch. In what will follow, the secondary mirror displace
ments are in units of arcseconds as measured on the sk

At the Caltech Submillimeter Observatory~CSO! a
chopping secondary mirror assembly was installed in 1
and has since been used both for heterodyne receivers
bolometer cameras~e.g., SHARC and HERTZ! observations.
It is composed, in part, of a carbon fiber mirror mounted
a dc brushless motor along with a system of counterweig
which greatly reduces the amount of vibration noise tra
mitted to the observatory’s receivers or cameras. The h
advantage that this vibration suppression technique bri
for the detection of weak signals comes, however, at the
of an increase in the inertia of the chopper assembly wh
causes a reduction in the speed and an increase in the se
time in the response of the system.

We show in Fig. 1 a block diagram of the choppin

a!Electronic mail: houde@submm.caltech.edu
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secondary system as it has been used since its installatio
the CSO. Once the user of the telescope has selected a
throw amplitude~in arcseconds! and frequency, a squar
wave is sent to the input of a typical proportional–integr
derivative~PID! electronic controller,1 where it is compared
to the position signal of the mirror@obtained through a linea
variable differential transformer~LVDT !#. The processed er
ror signal is then sent to a power amplifier, which feeds
motor and thus continuously repositions the mirror while t
PID controller acts to minimize the error signal.

Because of the relatively slow response of the chop
assembly, and the nonlinearities inherent to the system~see
Sec. IV!, the parameters of the PID controller cannot be h
fixed at a given set of values but have to be adjusted by
user of the telescope for different chop throw amplitudes a
frequencies. Although this does not present a problem
principle, it has been the experience that the tuning of
controller’s parameters can sometimes be a time consum
effort that reduces the efficiency of the observatory. Al
since, as will be shown later, the response time of the ass
bly is of the order of the chopping period~or more! it is often
quite difficult to find the appropriate set of parameters t
will give optimum results. Too often, the outcome of su
exercise is a reduction in the performance of the chopp
assembly; both in its settling time and positioning accura

In the following sections of this article we will demon
strate how a signal processing method based on the L
deconvolution technique2 was implemented at the CSO t
solve this problem and provide a system that requires
intervention from the telescope user, while keeping hardw
changes to a minimum. We will start in the next section w
a brief exposition of the set of equations that govern
Lucy deconvolution technique followed by a presentation
the new chopping secondary assembly~Sec. III!. We will
finish by showing how the deconvolution technique w
implemented, along with the needed modifications, and
presenting some results obtained so far.
2 © 2003 American Institute of Physics
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FIG. 1. Existing chopping secondary mirror assembly at the CSO. A square-wave signal is sent to the input of the PID controller and compared withror
output position signal~from a LVDT!. The resulting processed error signal is sent to a power amplifier which feeds the positioning motor.
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II. LUCY’S DECONVOLUTION TECHNIQUE

An iterative method for signal deconvolution based
the Bayes rule for conditional probabilities was introduc
by Lucy2 and has been successfully used in astronomy
the processing and extraction of precise photometric in
mation from originally blurred images taken under avera
seeing conditions~see, for example, Ref. 3!.

Limiting ourselves to a one-dimensional problem, the
of equations governing Lucy’s technique is relatively simp
Denoting byr (t) ands(t) the input and output signals of
linear system, respectively, we know that they are relate
each other through the transfer functionh(t) of this same
system by the following convolution integral:

s~ t !5E r ~t!h~ t2t!dt, ~1!

where the limits of integration in Eq.~1!, and in all of the
integrals that will follow, are from2` to 1`.

The goal of a deconvolution technique is to invert E
~1! and expressr (t) as a function ofs(t) using a new func-
tion g(t2t) as follows:

r ~t!5E s~ t !g~t2t !dt. ~2!

Lucy’s idea was to liken the~reversed! time shifted
transfer functionh(t2t) to a Bayes density function of con
ditional probability. In doing so, the new functiong(t2t)
can be interpreted as a new density function and readily
termined using the Bayes rule by4

g~t2t !5
r ~t!h~ t2t!

s~ t !
, ~3!

or alternatively

g~t2t !5
r ~t!h~ t2t!

*r ~l!h~ t2l!dl
.

Evidently, it is impossible to directly determineg(t
2t) with Eq. ~3! since it is expressed as a function ofr (t),
which is the unknown that we are trying to evaluate. But
form of Eqs. ~1!, ~2!, and ~3! suggests a simple iterativ
method that can be used to solve the problem.

If we supply an initial ‘‘guess’’r 0(t) for r (t) and insert
it in Eq. ~1!, we find a first approximate solutions0(t) to
s(t). We then in turn inserts0(t) along withr 0(t) in Eq. ~3!
to get an approximationg0(t2t) for g(t2t). Finally,
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g0(t2t) is used in Eq.~2! to get a new functionr 1(t), and
so on. This process can be repeated as often as desire
until convergence is attained.

The final set of equations that define this iterative alg
rithm can then be written as follows:

si~ t !5E r i~t!h~ t2t!dt, ~4!

r i 11~t!5r i~t!E s~ t !

si~ t !
h~ t2t!dt ~5!

for i 50,1,2,. . . .
Finally, two comments to end this section:

• The applicability of the solution to the problem give
by Eqs.~4! and ~5! is based on the implied assumptio
that the transfer function of the systemh(t) can be mea-
sured independently or is knowna priori. This is true
for the problem of the chopping secondary that will
addressed starting in the next section.

• It will be noted that the integral in Eq.~5! is actually a
correlation. It follows that the algorithm dictated by th
final set of equations can easily be programmed~i.e.,
computer coded! using subroutines based on the s
called fast-Fourier-transform~FFT! methods for convo-
lution and correlation integrals. This is what we ha
done in the implementation of our technique where
have used Fortran routines presented by Presset al.5

III. NEW CSO CHOPPING SECONDARY MIRROR
ASSEMBLY

In a simple implementation of Eqs.~4! and~5! one needs
a way to generate an input signal to be applied to a gi
system, measure the output of the system when subjecte
this input, and finally, evaluate the transfer function of t
system. In order to accomplish this with our chopping s
ondary system we modified our assembly from that of Fig
to that of Fig. 2. We have replaced the square-wave gener
of our original system by a real time Linux~RT Linux! com-
puter, which is equipped with the necessary input/output
vices~i.e., analog-to-digital and digital-to-analog converte!
to achieve these tasks.

The RT Linux computer also serves as host to the p
gram that performs the necessary calculations and meas
ments that will allow for the determination of the optimu
input to the chopper assembly.

Ideally, the sequence of operations would go like this
P license or copyright, see http://rsi.aip.org/rsi/copyright.jsp
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FIG. 2. New chopping secondary controller. The new mirror assembly is the same as that of Fig. 1, but the input signal is now fed to the PID contr
a RT Linux computer, which hosts the deconvolution program that determines the needed input signal.
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~1! Calibration of the system: signals of constant level
sent to the input of the assembly and the correspond
output levels are measured. In this manner, the ‘‘ga
and ‘‘offset’’ of the system are determined and applied
all subsequent input/output operations.

~2! Evaluation of the transfer function: this is done by sen
ing a step input signal of a given amplitude to the cho
per assembly and calculating the normalized time der
tive of the corresponding output signal. This is a ve
simple way to evaluate a transfer function since the c
volution of an arbitrary function with a unit step functio
is equivalent to the primitive of the original function
This is the technique we use although it should be no
that we also smooth the resulting time derivative with
Savitzky–Golay filter5 to reduce the impact of noise i
the application of the Lucy deconvolution technique. W
will show some examples of measured transfer functi
in the next section.

~3! Determination of the desired or targeted output sig
s(t).

~4! Determination of the optimum input signal: to do so o
would ~i! choose an arbitrary wave form as a hypothe
cal input of the assembly@r 0(t) in Eqs.~4! and~5!#; ~ii !
calculate the corresponding output responses0(t) of the
system using Eq.~4!; and ~iii ! calculate a new inpu
r 1(t) using Eq.~5!. Repeat~ii ! and~iii ! @usingr i(t) and
si(t), with i 51,2,. . . , instead ofr 0(t) ands0(t)] until
convergence to the best inputr f(t) signal is attained.

~5! Finally, r f(t) is applied to the input of the assembly
produce the outputsf(t) that most resemble the desire
outputs(t).

We have tested this technique on simple linear systems~e.g.,
electricalRC filters! with very good results. However, whe
applied to our chopping secondary mirror assembly the te
nique did not work in general. It was determined that t
nonlinearities in the system’s response were the cause of
failure and forced us to bring some changes to the algori
discussed here.

IV. IMPLEMENTATION OF THE METHOD

A. Nonlinearities

Since we have a dc motor as one of the main com
nents of the chopper assembly, it is not surprising that
system should include some nonlinearities in its response
one should expect, the magnetic core of the motor is inh
ently nonlinear as it will experience different amounts
saturation depending on the amplitude of the excitation i
Downloaded 13 Aug 2004 to 132.236.95.43. Redistribution subject to AI
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subjected to. That is to say, that the transfer function of
system changes with the input signal and that the sys
reacts differently to different chop throw amplitudes. Mor
over, it is also the case that the sign of the chop throw w
affect the shape of the transfer function. Simply stated,
system has hysteresis and, therefore, does not go ‘‘up’’
same way it goes ‘‘down.’’

This will be made clear with the results presented in F
3. In Fig. 3 we can see the effect that the nonlinearities h
on the transfer function of the system. The transfer functio
shown were measured using the method discussed ea
using rising~‘‘up’’ ! and falling~‘‘down’’ ! step functions~90
arcsec in amplitude! at two different rest positions~0 and 180
arcsec for the top and bottom graphs, respectively!.

From this it is clear why the algorithm defined by Eq

FIG. 3. ~Color! Effects of the nonlinearities as seen through transfer fu
tions obtained with rising~‘‘up’’ ! and falling ~‘‘down’’ ! step functions~90
arcsec in amplitude! at two different rest positions~0 and 180 arcsec for the
top and bottom graphs, respectively!.
P license or copyright, see http://rsi.aip.org/rsi/copyright.jsp
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3805Rev. Sci. Instrum., Vol. 74, No. 8, August 2003 Controlling a chopping secondary mirror
~4! and~5! would be doomed to failure. The same two equ
tions can, however, be easily adapted to the problem at h
and make it possible to use the Lucy deconvolution met
~albeit somewhat modified! for this kind of nonlinear system

B. Modifications to the Lucy deconvolution method

As was mentioned in the last section, the fact there d
not exist a single transfer function that defines the sys
does not imply that we cannot use the Lucy deconvolut
technique to achieve our goal, but we must acknowledge
existence of a family of transfer functions that are depend
on the input signal to the system. That is to say, we sho
replaceh(t) by h(t;r ), the aforementioned dependence
the input signalr (t) now being made explicit. In practice
this means that we now have to measure the transfer f
tions of the system along a sufficiently refined tw
dimensional grid of different step amplitudes~positive and
negative! and rest positions. Four examples of such meas
ments were shown in Fig. 3. For the results that will
presented later in this section, we have used a grid where
step amplitude ranges from2240 to 240 arcsec with a reso
lution of 30 arcsec and the rest position spans a similar
main with half the resolution~i.e., 60 arcsec!. It should be
noted that this measurement of the transfer functions requ
a fair amount of time~as much as 15–20 min for the gri
defined above!. But, on the other hand, it needs to be do
only once and does not have to be repeated for different c
throw amplitudes and frequencies.

Another important thing to realize is that, contrary
instances where one uses the Lucy technique to deconv
astronomical images,3 we are here free to use the system
measure its response to any given input signal and not fo
to calculate it through Eq.~4!. This means that the origina
set of Eqs.~4! and ~5! can be reduced to only one equatio
namely,

r i 11~t!5r i~t!E s~ t !

si~ t !
h~ t2t;r i !dt. ~6!

With these modifications, the sequence of operations defi
in Sec. III now becomes

~1! Calibration of the system: signals of constant level
sent to the input of the assembly and the correspond
output levels are measured. In this manner, the ‘‘ga
and ‘‘offset’’ of the system are determined and applied
all subsequent input/output operations.

~2! Evaluation of the transfer functions: a set of step inp
signals of differing amplitudes and rest positions are
quentially sent to the chopper assembly and the tran
functions are measured by calculating the normaliz
time derivative of the corresponding output signals.
Savitzky–Golay filter5 is applied to the functions to re
duce the impact of noise on the deconvolution.

~3! Determination of the desired or targeted output sig
s(t).

~4! Determination of the optimum input signal: to do so o
would ~i! send an arbitrary wave formr 0(t) to the input
to the assembly;~ii ! measure the corresponding outp
responses0(t) of the system; and~iii ! use Eq.~6! to
Downloaded 13 Aug 2004 to 132.236.95.43. Redistribution subject to AI
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determine a new input signalr 1(t). Repeat~i!, ~ii !, and
~iii ! @using r i(t) and si(t), with i 51,2,. . . , instead of
r 0(t) and s0(t)] until convergence to the best inpu
r f(t) signal is attained.

~5! Finally, r f(t) is applied to the input of the assembly
produce the outputsf(t) that most resemble the desire
outputs(t).

We have applied this technique to our chopping second
mirror assembly at the CSO with success. We show typ
results in Figs. 4 and 5 for chop throws of 60 and 300 arcs
respectively, at a frequency of 1 Hz. For this, we chose
initial input signal r 0(t) to be a square wave with corre
sponding amplitudes and frequency, the system’s respons
this input is labeled ‘‘uncorrected output’’ in the legends. T
desired or ‘‘targeted output’’ signals corresponding tos(t)
~also shown on the graphs! in Eq. ~6! in both cases rise~or
fall! at the same rate of 3 arcsec per millisecond when
constant. A comparison of the ‘‘uncorrected output’’@s0(t)#
with the ‘‘corrected output’’@sf(t)# shows the power of this
deconvolution method when applied to this type of problem
In both cases the improvement is significant. Furthermore
would have been next to impossible to guess which fo
should the final input signalr f(t) ~shown by the ‘‘applied
input’’ curves in the graphs! take to obtained the desire

FIG. 4. ~Color! Results obtained with our deconvolution technique for
throw of 60 arcsec at a frequency of 1 Hz~top!. The residual error signal is
plotted in the bottom graph and its rms value~0.6 arcsec! was calculated
using data points located between the vertical lines~on the flatter parts of the
curve which represent about 84% of a period!.
P license or copyright, see http://rsi.aip.org/rsi/copyright.jsp
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3806 Rev. Sci. Instrum., Vol. 74, No. 8, August 2003 Houde et al.
outcome. The residual error signal is also plotted in the b
tom graph of each figure. As can be seen, the rms e
calculated on flatter parts of the curves are in both ca
small (<1.1 arcsec).

Referring to Fig. 3 we see that the transfer function
the system settles down in about 0.5 s, which is exactly eq
to half of the period of the signals displayed in Figs. 4 and
This means that the assembly would have just enough
to settle into steady state during half of a cycle when s
jected to a square wave of a frequency of 1 Hz. It would
interesting to see how our technique fares when the perio
the input signal is reduced to a value that is significantly l
than that the system’s settling time. To test this we ha
subjected the chopper assembly to a signal of a frequenc
4 Hz and tried to obtained an output of 60 arcsec in am
tude. This is shown in Fig. 6 where now the ‘‘targeted o
put’’ rises and falls at a rate of 6 arcsec per millisecond wh
not constant. Although as could be expected the ove
shape of the resulting output signal is somewhat m
‘‘rounded’’ when compared to the results shown in Fig. 4, t
improvement obtained in going from the ‘‘uncorrected o

FIG. 5. ~Color! Results obtained with our deconvolution technique for
throw of 300 arcsec at a frequency of 1 Hz~top!. The residual error signal is
plotted in the bottom graph and its rms value~1.1 arcsec! was calculated
using data points located between the vertical lines~on the flatter parts of the
curve which represent about 60% of a period!.
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put’’ to the final output signal~i.e., ‘‘corrected output’’ on the
graph! is rather significant. In fact, we can see from the b
tom graph that for about 53% of a period the response i
most within a few arcseconds from the desired position;
rms value of the error on that portion of the signal is 2
arcsec.
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FIG. 6. ~Color! Results obtained with our deconvolution technique for
throw of 60 arcsec at a frequency of 4 Hz~top!. The residual error signal is
plotted in the bottom graph and its rms value~2.1 arcsec! was calculated
using data points located between the vertical lines~on the flatter parts of the
curve which represent about 53% of a period!.
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